首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1529篇
  免费   68篇
  国内免费   4篇
化学   1341篇
晶体学   4篇
力学   10篇
数学   108篇
物理学   138篇
  2023年   20篇
  2022年   13篇
  2021年   40篇
  2020年   40篇
  2019年   26篇
  2018年   28篇
  2017年   26篇
  2016年   52篇
  2015年   63篇
  2014年   71篇
  2013年   98篇
  2012年   105篇
  2011年   107篇
  2010年   63篇
  2009年   60篇
  2008年   103篇
  2007年   108篇
  2006年   91篇
  2005年   80篇
  2004年   62篇
  2003年   46篇
  2002年   58篇
  2001年   14篇
  2000年   29篇
  1999年   18篇
  1998年   16篇
  1997年   11篇
  1996年   6篇
  1995年   17篇
  1994年   8篇
  1993年   9篇
  1992年   9篇
  1991年   11篇
  1990年   10篇
  1989年   9篇
  1988年   5篇
  1987年   9篇
  1986年   6篇
  1985年   10篇
  1984年   11篇
  1983年   9篇
  1981年   6篇
  1979年   4篇
  1970年   1篇
  1967年   1篇
  1961年   1篇
  1920年   1篇
  1896年   1篇
  1892年   1篇
  1890年   1篇
排序方式: 共有1601条查询结果,搜索用时 250 毫秒
61.
The catalytic activity of the respiratory NADH:ubiquinone oxidoreductase (complex I) is based on conformational reorganizations. Herein we probe the effect of substrates on the conformational flexibility of complex I by means of 1H/2H exchange kinetics at the level of the amide proton in the mid‐infrared spectral range (1700–1500 cm?1). Slow, medium, and fast exchanging domains are distinguished that reveal different accessibilities to the solvent. Whereas amide hydrogens undergo rapid exchange with the solvent in an open structure, hydrogens experience much slower exchange when they are involved in H‐bonded structures or when they are sterically inaccessible for the solvent. The results indicate a structure that is more open in the presence of both NADH and quinon. Complementary information on the overall internal hydrogen bonding of the protein was probed in the far infrared (300–30 cm?1), a spectral range that includes a continuum mode of the hydrogen bonding signature.  相似文献   
62.
Designing three‐dimensional (3D) scaffolds for selective manipulation of cell growth is of high relevance for applications in regenerative medicine. Especially, scaffolds with oriented morphologies bear high potential to guide the restoration of specific tissues. The fabrication of hydrogel scaffolds that support long‐term survival, proliferation, and unidirectional growth of embedded cells is presented here. Parallel channel structures are introduced into the bulk hydrogels by uniaxial freezing, providing stable, and uniform porosity suitable for cell invasion (pore diameters of 5–15 µm). In vitro assessment of the scaffolds with murine fibroblasts (NIH L929) shows a remarkable unidirectional movement along the channels, with the cells traveling several millimeters through the hydrogel.

  相似文献   

63.
Methylation of 5,11,17,23-tetranitrothiacalix[4]arene with diazomethane leads to the tetramethoxy derivative, which was studied using single-crystal X-ray crystallography. It revealed that this compound, albeit in the 1,3-alternate conformation, can form the inclusion complexes with various solvent molecules possessing acidic methyl groups (ethyl acetate, nitromethane, acetone, acetonitrile) and creates interesting infinite channels filled with solvent molecules. The subsequent transformation of nitro groups into the ureido moieties gave receptors capable of anion recognition even in a highly HB-competitive solvent like DMSO.  相似文献   
64.
65.
In this work, the kinetics of barium sulfate recrystallization has been studied in acidic 0.01 mol dm?3 sodium sulfate solution using 223Ra and 133Ba tracers at very low total radium concentration, i.e. less than 10?13 mol dm?3. It was found that the system follows the homogeneous recrystallization model and that recrystallization rates, inferred by the decrease of 223Ra and 133Ba in the aqueous solution, are fast. Therefore, even at very low concentrations, below the solubility limit, radium will be retained by barium sulfate—a mineral present in the deep underground repository.  相似文献   
66.
Nanosized titanium dioxide (TiO2) is one of the most interesting and valuable nanomaterials for the construction industry but also in health care applications, food, and consumer goods, e.g., cosmetics. Therefore, the properties associated with this material are described in detail. Despite its widespread use, the analytical determination and characterization of nanosized metal oxides is not as straightforward as the comparatively easy-to-detect metallic nanoparticles (e.g., silver or gold). This study presents the method development and the results of the determination of tissue titanium (Ti) levels after treatment of rats with the nanosized TiO2. Total Ti levels were chosen to evaluate the presence and distribution of TiO2 nanoparticles. A procedure consisting of incubation with a mixture of nitric acid (HNO3) and hydrofluoric acid (HF), and heating was developed to digest tissues and TiO2 nanomaterials in order to determine the total Ti content by inductively coupled plasma mass spectrometry (ICPMS). For the inter-laboratory comparison, altogether four laboratories analyzed the same samples upon digestion using the available ICPMS equipment. A major premise for any toxicokinetic study is the possibility to detect the chemical under investigation in biological samples (tissues). So, the study has to be performed with a dose high enough to allow for subsequent tissue level measurement of the chemical under investigation. On the other hand, dose of the chemical applied should not induce over toxicity in the animal as this may affect its absorption, distribution, metabolism, and excretion. To determine a non-toxic TiO2 dosage, an acute toxicity study in rats was performed, and the organs obtained were evaluated for the presence of Ti by ICPMS. Despite the differences in methodology and independent of the sample preparation and the ICPMS equipment used, the results obtained for samples with Ti concentrations >4 μg Ti/g tissue agreed well.
Figure
Major Ti concentrations in micrograms per gram of organ as determined by different laboratories.  相似文献   
67.
A combined setup of quartz crystal microbalance and generalized ellipsometry can be used to comprehensively investigate complex functional coatings comprising stimuli-responsive polymer brushes and 3D nanostructures in a dynamic, noninvasive in situ measurement. While the quartz crystal microbalance detects the overall change in areal mass, for instance, during a swelling or adsorption process, the generalized ellipsometry data can be evaluated in terms of a layered model to distinguish between processes occurring within the intercolumnar space or on top of the anisotropic nanocolumns. Silicon films with anisotropic nanocolumnar morphology were prepared by the glancing angle deposition technique and further functionalized by grafting of poly-(acrylic acid) or poly-(N- isopropylacrylamide) chains. Investigations of the thermoresponsive swelling of the poly-(N-isopropylacrylamide) brush on the Si nanocolumns proved the successful preparation of a stimuli-responsive coating. Furthermore, the potential of these novel coatings in the field of biotechnology was explored by investigation of the adsorption of the model protein bovine serum albumin. Adsorption, retention, and desorption triggered by a change in the pH value is observed using poly-(acrylic acid) functionalized nanostructures, although generalized ellipsometry data revealed that this process occurs only on top of the nanostructures. Poly-(N-isopropylacrylamide) is found to render the nanostructures non-fouling properties.  相似文献   
68.
A series of non-fullerene acceptors based on perylene monoimides coupled in the peri position through phenylene linkers were synthesized via Suzuki-coupling reactions. Various substitution patterns were investigated using density functional theory (DFT) calculations in combination with experimental data to elucidate the geometry and their optical and electrochemical properties. Further investigations of the bulk properties with grazing incidence wide angle X-ray scattering (GIWAXS) gave insight into the stacking behavior of the acceptor thin films. Electrochemical and morphological properties correlate with the photovoltaic performance of devices with the polymeric donor PBDB-T and a maximum efficiency of 3.17 % was reached. The study gives detailed information about structure–property relationships of perylene-linker-perylene compounds.  相似文献   
69.
A new approach for the evaluation of chiral purity of serine esterification products bearing long-chain alkyl substituents was developed. The compounds were simply converted to aryl-substituted oxazolines which: (i) facilitates effective chromatographic enantioseparation and (ii) enables direct detection using ultraviolet absorption. The method employs a polysaccharide-based chiral stationary phase and allows enantioseparation of highly stable oxazoline products in less than 6 min using a simple binary mobile phase. As opposed to the previously used normal phase method the developed method was performed in the reversed-phase mode. Aside from the benefits of switching to less hazardous solvents with regard to the principles of Green Chemistry, this has also led to a reduction in the analysis time. In comparison with known serine chromophores, the best enantioseparation of aryloxazoline rigid structure may be achieved only based on non-polar interactions with the chiral stationary phase. In contrast, the substitution of the chromophore moiety with hydroxyl substituent affected intra and intermolecular interactions that caused enantioseparation differences. Concurrently, we found high chirality retention of (R)- and (S)-configuration oxazoline standards (≥99% enantiomeric excess) during the introduction of the ultraviolet label. The method is suitable for rapid injection of the mixture containing the ultraviolet absorption marker without prior purification.  相似文献   
70.
The synthesis and crystal structure (100 K) of the title compound, [Fe(C10H11BrN3OS)2]NO3·H2O, is reported. The asymmetric unit consists of an octahedral [FeIII(HL)2]+ cation, where HL? is H-5-Br-thsa-Et or 5-bromosalicylaldehyde 4-ethylthiosemicarbazonate(1?) {systematic name: 4-bromo-2-[(4-ethylthiosemicarbazidoidene)methyl]phenolate}, a nitrate anion and a noncoordinated water molecule. Each HL? ligand binds via the thione S, the imine N and the phenolate O atom, resulting in an FeIIIS2N2O2 chromophore. The ligands are orientated in two perpendicular planes, with the O and S atoms in cis and the N atoms in trans positions. This [Fe(HL)2](anion)·H2O compound contains the first known cationic FeIII entity containing two salicylaldehyde thiosemicarbazone derivatives. The FeIII ion is in the high-spin state at 100 K. In addition, a comparative IR spectroscopic study of the free ligand and the ferric complex is presented, demonstrating that such an analysis provides a quick identification of the degree of deprotonation and the coordination mode of the ligand in this class of metal compounds. The variable-temperature magnetic susceptibility measurements (5–320 K) are consistent with the presence of a high-spin FeIII ion with a zero-field splitting D = 0.439 (1) cm?1.  相似文献   
[首页] « 上一页 [2] [3] [4] [5] [6] 7 [8] [9] [10] [11] [12] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号